

Dynamic Weather Routes Architecture Overview

Hassan Eslami (UCSC UARC)
Michelle Eshow (NASA)
2/18/14

CTAS (Center/TRACON Automation System) Software Platform Overview

- CTAS: A platform for real-time, trajectory-based automation and controller decision support tools
- Notable controller decision support tools based on CTAS
 - Traffic Management Advisor (TMA)
 - Direct-To (D2)
 - Terminal Sequencing and Spacing (TSS)
 - Dynamic Weather Routes (DWR)
- CTAS main internal functions:
 - External input data processing (Flight plans, Tracks, Weather, Wind)
 - 4-D trajectory generation
 - Decision automation algorithms
 - Advisories generation
 - Interactive decision support graphical user interface

General CTAS System in Live Data Context

Live track data from direct FAA-to-NASA feeds

Direct-To System in Live Data Context

Direct-To does not use weather data

DWR System in Live Data Context

DWR Input Data Sources and Update Rates

- Host/ERAM data (Flight plan, Track, etc.): Direct NASA-FAA feeds 12 sec
- NAS configuration Chart Change Update from FAA (adaptation): From FAA 56 days
- Aircraft performance data: NASA static
- Corridor Integrated Weather System (CIWS) Convective Forecasts: From FAA 5 Min, 120 min forecast
- Convective Weather Avoidance Contours (CWAM): Data derived from CIWS by CTAS weather processing scripts - 5 min, 120 min prediction
- Wind information (Rapid Refresh RR): From NOAA 60 minutes update and prediction
- Special Use Airspace (SUA) data: From public web site 15 min
- Aircraft Situation Display to Industry (ASDI) data: FAA 1 min
- Traffic Flow Management Data to Industry (TFMDI) for route traffic management initiative information: FAA 5 min

2/18/14 Version 1 6

CTAS Software Components

DWR Software Components

DWR Software Components ISM, CM, RA

ISM (Input Source Manager)

- Integrates and consolidates data from Center Host Computers (Host or ERAM)
- Performs flight state filtering and state estimation (heading, vertical speed)

CM (Communications Manager)

Internal data exchange hub for CTAS processes (PFSE, RA, PGUI)

RA (Route Analyzer)

- Generates all possible horizontal trajectories a flight may take, using TS (Trajectory Synthesizer)
- Intended for arrival traffic; only one route generated for DWR case

Note: All processes read adaptation data at start-up

DWR Software Components PFSE, PGUI

PFSE (Profile Selector En-Route)

- Multi-threaded algorithm engine
- Uses multiple threads of TS (Trajectory Synthesizer) and AAC (Advance Airspace Concept/Auto Resolver) for trajectory and maneuver calculations
- Generates among many data types, conflict and advisory information

PGUI (Planview GUI)

- Interactive decision support graphical user interface
- Mimics the controller DSR

Note: All processes read adaptation data at start-up

DWR Software Components TS, AAC

TS (Trajectory Synthesizer)

- Invoked by PFSE and RA
- Uses aircraft's position data (initial and destination), performance data, speed information, route list, and wind information to predict flight path profile (horizontal, vertical, speed, time, turns, etc.)

AAC (Advance Airspace Concept/Weather and Traffic Auto Resolver)

- Invoked by PFSE
- Accepts as input data the trajectory, route, and conflict information
- Proposes potential conflict free maneuvers
- PFSE and AAC reiterate on intermediate maneuvers and conflict information towards a final conflict free maneuver

Direct-To Software Components – Foundation for DWR

DWR Changes to Direct-To Software

DWR Data Flow: External Data

DWR Internal Data Flow: RA

2/18/

DWR Internal Data Flow: PFSE

Flight Plan Trajectory Status (Success, Failure)

DWR Internal Data Flow: PGUI

DWR/CTAS Host Data Elements: Host Flight Plan

- Time received
- Aircraft Identification
 - Host Computer Aircraft ID
 - Call sign
 - Aircraft data/type (FAA designated type)
 - Beacon code
- Facility Information
 - Controlling Facility

Note: Flight plan information is required on initiation of a flight and whenever the value of an element changes

DWR/CTAS Host Data Elements: Host Flight Plan – Cont'd

Flight Information

- Filed true airspeed
- Assigned altitude
- Planned route
- Center Parsed Route (AK Route)
- Coordination fix
- Coordination time
- Temporary Altitude
- Status
 - P(proposed): Flight that will take off at some future time(Proposed or planned)
 - E(Estimated): Flight that is crossing center boundaries and will be picked up in the air at the coordination fix and coordination time.
 - D(Departed): Flight that is departing an airport. Will be tracked soon.

DWR/CTAS Host Data Elements: Host Track

- Data arrival time to CTAS
- Host track time
- Aircraft Identification
 - Host Computer Aircraft ID
 - Call Sign
- Track Source Information (ARTS, STARS, HOST, ERAM)
 - Source type (used by ISM to filter)
 - Facility ID
 - Sector ID

DWR/CTAS Host Data Elements: Host Track – Cont'd

Flight Information

- Altitude (feet above MSL)
- Ground speed
- Coasting indicator (Coast bit == 'C' if true)
- Latitude
- Longitude

DWR/CTAS Host Data Elements: Drop Track, Delete Aircraft, Time Sync

Drop Track:

- Aircraft Identification
 - Host Computer Aircraft ID
 - Call Sign
- Controlling Facility

Delete Aircraft:

- Host Computer Aircraft ID
- Call Sign

Host/Application Time Synchronization:

- Host time sync
- Hours
- Minutes
- Seconds

CTAS Adaptation

- Each ARTCC adapted separately and updated on the 56-day FAA cycle
- Vast majority of adaptation from FAA sources, including NFDC, ACES, and ERAM data
- Definition of arrival procedures generated by hand (e.g., meter fixes, stream classes, etc.)
- About 12K lines of custom adaptation per site
 - Much can be modeled on existing sites
 - If arrivals not of interest, can be simplified

Software Characteristics

- Mixture of C, C++, Java, scripts
- Multi-threading used as necessary
- Message-passing is by TCP/IP message, defined by C data structures
- Each process maintains internal database of flights, via a binary tree
- Common code shared among processes, via libraries

CTAS Software Stats

- C/C++ stats:
 - 1M lines of code in 5K files
 - 800K lines of comments
- Java stats:
 - 165K lines of code in 800 files
 - 180K lines of comments
- Stats come from Understand product

CTAS Software Dependencies

- Linux or Mac OSX (NOT Windows)
 - Currently supporting RedHat 5.8, CentOS 6.4, OSX 10.7
 - 64-bit compilation using GNU GCC, Oracle Java compilers
- Various free libraries:
 - X11/Motif (graphics)
 - QT, QWT (graphics)
 - HDF5 (weather format)
 - XML (adaptation format)
 - Python
 - MySQL (optional)

CTAS Directory Structure

